

Abstract – People love digital collectibles and kopi
(Singapore slang for local coffee). We created Kopi Time to
satisfy both interests – a marketplace for people to buy, sell
and collect coffee collectibles. In addition, this paper introduces
the novel use of a framework-independent Saga Engine to
handle microservice coordination and compensations.

I. THE PROBLEM

In recent years, there has been an explosive rise in
popularity of digital collectibles and coffee. However, there is
no solution that simultaneously satisfies both trends – there is
no platform for kopi collectibles.

II. THE SOLUTION

The team is proud to present Kopi Time – a bustling digital
marketplace for vibrant kopi collectibles, where users can buy,
sell, and collect one-of-a-kind coffee art123.

Figure 1. Sample of Kopi Collectibles

III. KEY SCENARIOS

A. Seller: Auction

Sellers can put their own collectibles up for auction. To do
this, a series of calls are made, namely:

(1) get seller and item information from user and
inventory services;

(2) create a listing on listing service;
(3) start a timeout job to count down to the auction

expiration on auction service; and

1 Leettari. (2020, November 8). Squidward Coffee Animation GIF. Tenor. Retrieved November 15, 2021, from https://tenor.com/search/coffee-

animations-gifs.
2 Squarespace. (2021). Squarespace Rotating Coffee Cup. Squarespace. Retrieved November 16, 2021, from https://images.squarespace-

cdn.com/content/v1/60d038c7c9c09c1fa7dbbde1/1624342467860-GBMAX9TZ0JFKBDXQCSP2/coffee-cup-illustration-sofia-varano-perth.
3 Dribble. (2021). Rotating Coffee GIF. Dribble. Retrieved November 16, 2021, from

https://cdn.dribbble.com/users/1054552/screenshots/2532001/media/f8375f75a642f66c898bdfc987956b0d.gif.

(4) inform the inventory service that the item is currently
pending auction.

B. Buyer: Bid

Buyers can submit bids for collectibles which are up for
auction. To do this, a series of calls are made, namely:

(1) get bidder information from user service;
(2) update listing service on change of highest bidder and

offer (if any); and
(3) deduct the bid amount from the user's account in user

service.

C. Market: Reconcile

As the market closes, sellers are matched with the highest
bidders, successful buyers receive their kopi collectibles, and all
involved parties receive an email notification of the auction
outcome.

(1) auction service initiates expiration when the timeout
job for a listing has ended;

(2) listing service is updated to indicate that a listing has
been sold;

(3) auction service obtains the highest bidder and offer
amount from listing service;

(4) inventory service is updated to reflect the new owner
of the sold item;

(5) user service is updated for all unsuccessful buyers to
have their bid amount returned; and

(6) notification service is called to send email
notifications to all involved parties on auction
outcome.

IV. MICROSERVICE ARCHITECTURE

Kopi Time is built using a layered, service-oriented
architecture: UI, gateway, composite, atomic and wrapper
layers. All our services are written in Python or TypeScript.

CS302 Final Project Report
Tony Hoare

Bryan Lee Min Yuan, Christopher Lim Sheng Yong, Ko Hui Ning,

Justina Ann Wong, Pang Huan Shan Shawn

Singapore Management University

{bryan.lee.2019, sylim.2019, huining.ko.2019,
justinawong.2019, shawn.pang.2019}@scis.smu.edu.sg

A. Web App (UI)

Our web application is built with Next.js. The application
is server-side rendered for a quick initial page load.
Authentication is managed with client-side cookies and server-
side sessions. For security, clients do not have direct access to
session information. Instead, authenticated requests are
proxied through the application server which then injects
sensitive session data before passing the request onto the
backend infrastructure. Each page on our web application is
also supported by the GraphQL gateway.

B. GraphQL Gateway

Our GraphQL gateway is a unified data querying interface
for our web application. The web application has pages that
require data from multiple microservices joined together. For
example, on the /listings page, listing information is required
from the listing service, but each listing also needs a reference
to the item being listed from the inventory service. Additional
information is also required for the current user's details and
inventory. Therefore, GraphQL was introduced to support the
data requirements of our web application. Refer to the section
on self-directed research for more information.

C. API Gateway

Similar to the GraphQL gateway, our NGINX API gateway
acts as a reverse proxy and provides a single point of access for
external clients to access Kopi Time’s services. Unlike the
GraphQL gateway, it handles all other requests apart from
fetching data (GETs) and it does not perform API
composition. The API gateway does not contain any edge
functions, but nonetheless, it loosens coupling as clients do not
need to know where each microservice is at. This encapsulates
the internal structure of Kopi Time and protects the internal
microservices from being accessed directly, while enabling
extensibility for future design decisions such as toggling access

to certain endpoints, performing edge functions, and applying
the strangler pattern with API versioning.

D. Auction (Composite)

The composite auction service is responsible for three
functions in relation to the key scenarios described earlier. It
has one endpoint exposed for clients to auction an item and
another for clients to bid on an existing auction. It also has an
internal function inaccessible to clients to expire an existing
auction once it expires. For all three functions, the auction
service will then craft a sequential saga transaction request in
JSON format which is then sent to the Saga Engine. The Saga
Engine will then perform the necessary steps to adjust the
monetary balance of the involved parties (user service), reserve
and transfer ownership of transacted items (inventory service)
and update the listing details of the auction (listing service).

The auction service uses the privileged role of “SERVICE”
when performing some of these actions (e.g., adjusting the
balance of the user). More about the “SERVICE” role is
discussed in the JWT User Authentication section under self-
directed research. The auction service will then trigger the
notification service through AMQP to notify all involved users.
With brevity in mind, the exact implementation details and
steps taken by the auction service are documented in comment
blocks within the source code of the auction service’s
src/app.py file.

Internally, the auction service uses Advanced Python
Scheduler (APScheduler) to run a background scheduler with
a MySQL database as a persistent datastore to schedule
auction expiration jobs whenever a new auction is created. For
scheduling consistency, all timestamps involved in Kopi Time
microservices are in UTC, except for the frontend web
application where it is localised. When an auction expires, the
scheduled auction expiry job will trigger the expiry function as
discussed earlier.

Figure 2. Architecture diagram of Kopi Time

E. Saga Engine (Composite)

The Saga Engine is an orchestration engine that handles
transactions across multiple microservices. The primary goal is
to provide a single framework-agnostic implementation of the
saga pattern. Refer to the section on self-directed research for
more information.

F. User (Atomic)

The user service has three primary functions. Firstly, it
issues tokens via its login endpoint for system-wide use, which
checks the validity of a submitted username and password
before creating and returning the JWT (more on JWTs under
self-directed research). The user service also allows user
creation via a registration endpoint. It rejects users that
attempt to register with an existing username, as the username
is used as a primary key within the Kopi Time ecosystem.
Finally, the user service allows user information such as user
email and account balance to be read and updated by users
and other services.

G. Inventory (Atomic)

The inventory service handles simple CRUD operations,
such as getting, adding, and deleting inventory. There are two
methods that support the auction service: (1) reserve an item
to prevent duplicate listings and (2) transfer an item between
owners. As we are dealing with collectibles, we decided to make
each item one-of-a-kind.

H. Listing (Atomic)

The listing service is primarily concerned with keeping track
of the status of listings that have been created. To do this, the
service has three main functions. Firstly, the service allows for
creation of new listings and includes in the listing information
the seller, item ID, highest bidder, and highest bid. Secondly,
the service also has an endpoint to update the highest bidder
whenever a new bid for the listing is received. This endpoint
also handles situations where the incoming bid is higher than
the auto win amount and marks the item as sold. Lastly, the
service handles the logic of updating expired auction listings
based on their outcome. Listings which expire while having at
least one bidder will be marked as sold to the highest bidder,
while listings without bidders will be marked as closed.

I. Notifications (Wrapper)

 The notification service consumes AMQP messages in
JSON format from a notifications queue bound to the
notifications exchange on the RabbitMQ broker. The service
differentiates messages via their routing keys, which specify the
type of notification being sent – successful bid, auto-win, item
sold, etc. The notification service then selects the email
template meant for the requested notification type and
populates it with the details specified in the message payload.
To send the emails, the notification service uses an external

API called SendGrid and injects the necessary credentials via
environment variables. The notification service acts as a
wrapper for this external API. This helps to decouple the
external API from our internal systems, making it easy to
maintain and extend our notification service in the future.

V. DEVOPS TOOLS & PRACTICES

 Gene Kim’s “Three Ways” were incorporated in several
different forms throughout our development process, giving us
a deeper appreciation of their efficacy.

 In achieving flow, we found a Kanban board particularly
useful for visualising how work was flowing. The board allowed
us to: (1) track the status of various tasks, (2) increase
awareness of what each team member was working on at each
point of time, and (3) gain a sense of progress on the system
as a whole. Early on, we also realised that multiple team
members would need to use different service endpoints locally,
e.g., for service integration. However as more services were
added, it started taking extensive time and effort for each
member to update their own API client environments with
changes made to other services’ APIs. Hence, we elevated this
constraint by creating a shared Postman workspace, such that
each developer could update the shared workspace with the
changes they made, thereby allowing other developers to jump
straight into development and integration.

Figure 3. Shared Postman Workspace

 To ensure fast and constant feedback, each CI pipeline

was set up concurrently with its corresponding service to
ensure that feedback would be provided throughout the
development process. Fast feedback was also enabled via our
use of pre-commit hooks (flake8, pylint, black and isort for
Python, and eslint and prettier for TypeScript), which allowed
us to perform static analysis on fresh code even before a
commit was made. Local testing was also enabled via Docker
Compose, which allowed us to perform integration and
component testing before committing any code. This
immediate feedback mechanism ensured that the team only
committed and pushed clean, working, and well-formatted code
as far as possible. Our team would also swarm to solve

problems together via Telegram or by hopping on a quick
Discord call if multiple services were involved in the problem,
instead of passing the problem from person to person (much
like in a tiered support model). In building our microservices,
we also started integration between services early on rather
than developing each service in silos, allowing us to understand
the endpoints and architecture that would need to be added
and fixed on each service to enable coordination between
services. This helped to ensure that we would not have to
modify the services extensively at the end during a last-minute
integration session.

 Our team also supported a safety culture for continual
learning, where bugs/issues found were brought up factually
and energy was focused on discussing the fixes necessary rather
than on pushing blame around.

VI. CI/CD PIPELINES

For each microservice repository in Kopi Time, we set up
individual CI/CD pipelines with four stages: static analysis,
test, release and deploy. Due to the purpose of the
microservices and time constraints, some repositories do not
have certain pipeline stages; in particular, the frontend web
application, GraphQL gateway and notification service do not
have the test stage, and the API gateway does not have the
static analysis stage. The entire pipeline is automatic, meaning
that there are no manual stages in the pipeline. The pipeline
is triggered by a developer when their code is pushed to the
main branch of the microservice repository.

At the static analysis stage, we run various language-specific
static analysis jobs including flake8 and pylint for microservices
written in Python, and eslint and prettier for microservices
written in TypeScript. These static code analysis jobs help
ensure that our codebase meets coding standards and provides
feedback on whether there are code smells present, so that we
can take necessary measures to fix them before deployment.

At the test stage, we run integration tests on our atomic
services (user, inventory, and listing services), component tests
on our composite services (auction and saga), and a
configuration test for the NGINX API gateway. For the
component test in the auction service, we created WireMock
test stubs with canned Saga Engine responses. We performed
this sort of black box testing on our composite services as it
made testing for us closer to being more realistic, while still
ensuring that we are testing this service in isolation without
spinning up the real services. This allowed us to take
advantage of building loosely coupled services with their own
individual pipelines.

At the release stage, the Docker image is built and pushed
into the container registry of each microservice repository on
GitLab. Every time the pipeline is triggered, a new image is
built with a new image hash/ID, producing smaller and more
reliable releases.

At the deploy stage, we used a custom cloud deploy job (see
open-source contribution in the self-directed research section)
to automatically process the deployment of the Docker image
into the Elastic Container Service (ECS) cluster on Amazon
Web Services (AWS). The cloud deploy script accesses the
CI/CD variables configured in the repository to determine the
ECS cluster, service, task definition and container name to
update. An IAM user role is configured with permission to
update ECS task definitions. The script uses the user role to
update ECS task definitions and roll-out updates to the ECS
services. Once the task definition has been updated and the
service is rolled out, the container will privately authenticate
with GitLab using a configured deploy token stored in AWS
Secrets Manager to pull the image stored in the microservice’s
container registry on GitLab during the release stage.

If any stage in the pipeline fails, the entire pipeline will fail,
preventing potentially bad code from being deployed into
production. We would then have to rectify the issue and make
another commit to trigger the pipeline once more.

VII. DEPLOYMENT TO PRODUCTION

Locally, we set up a Docker Compose environment to run
Kopi Time. More details on how to run this can be found in
the API documentation or within the README file of the
“kopi-time” repository itself.

For production, we created an ECS cluster on AWS to host
Kopi Time’s microservices, with each microservice defined as
an EC2 task definition and configured as an EC2 ECS service.
We use an S3 bucket to store our production environment file
for our microservices, which includes database connection
details, a production JWT secret key, service account
credentials, RabbitMQ credentials, SendGrid API credentials
and template information, time zone information, and URLs
that point to our various services. We also set up a production
MySQL database using Amazon Relational Database Service
(RDS). When using the services on AWS, we constantly
monitored our billing amount to ensure that our team does not
exceed the allocated budget of USD 278.

VIII. SELF-DIRECTED RESEARCH

Through the journey of developing Kopi Time, our team
conducted self-directed research on various concepts – some of
which have already been introduced and briefly discussed in
the above sections, including the Saga Engine and GraphQL
gateway. The following subsections will further flesh out the
details of each self-directed research concept we have explored.

A. JWT User Authentication

We implemented JWTs at the service level through the
Flask-JWT-Extended package to keep security close to each
service. Initially, we explored JWT authentication on the API
Gateway with Kong but felt that a service-level
implementation would offer greater flexibility and simplicity

for implementing different levels of authorization at the path-
level. The user service generates all JWTs, which are used for
authorization on each service. All JWTs are signed with a
secret to prevent tampering, thereby ensuring data integrity of
the JWT tokens. This secret is shared by all Kopi Time
microservices and used to verify the JWT signature.

When a user logs in with their username and password, a
fresh JWT is generated and returned to the web application.
This JWT includes the email, role, and balance of the user for
use by other services. There are currently two roles – “USER”,
a logged-in user, and “SERVICE”. The latter is only obtainable
by a Kopi Time service which uses the service username and
password which are defined on user service start-up. These
roles are used to provide access control for certain actions. For
example, only a service is allowed to make a transfer between
two users when a bid expires. For development purposes, all
services share the same account, but this is easily modifiable
to provide more granular access control.

B. CloudWatch

Figure 4. Container map of Kopi Time cluster on AWS

a) Monitoring: ECS has service-related telemetry data

readily available on CloudWatch, including CPU and memory
utilisation, network traffic, and a lot more. We were able to
monitor the CPU and memory utilisation using a heatmap
showing all our services running in the cluster. This then paved
the way to proactive alerting where we took the metrics and
created anomaly detection alarms that sent us email alerts
whenever it detected abnormal memory utilization within our
services. Using this insight, we discovered a low-memory issue
on the frontend web application, which we then allocated more
memory to.
b) Logging: We also implemented centralised logging

on all our microservices with sidecar containers defined in each
of our ECS task definitions. These sidecar log routers helped
our team tremendously as they automatically instrumented
and collected the output logs of our main microservice
containers, simply by defining environment variables in the
task definition. The logs can then be easily accessed as
individual log streams on CloudWatch. This value-added to
our project – especially so for a complex system like Kopi Time
– because it gave us greater visibility into our system. We

managed to see problems as they occur, and it led to faster
feedback.

C. Open-Source Contribution

Whenever we updated a microservice and the deploy job
kicked in, we expected that GitLab’s ECS cloud deploy image
would properly update the image tag of our container in the
ECS task definition with the new one. However, it overwrites
the image tags of all containers present in the task definition,
including the sidecar log router. This breaks the ECS service
when it attempts to run the log router sidecar container using
the main container’s image.

The problem is that GitLab’s script lacked the feature to
indicate which container to update when deploying. We went
to the root of the problem and added that feature into GitLab’s
cloud deploy script and made this update public by opening a
merge request on GitLab’s official cloud deploy repo, so that
developers can globally benefit from our local discovery. This
fixed the problem we were facing, and we are now using this
updated cloud deploy script for all our microservice
deployments.

D. Production WSGI

 Knowing that Flask’s built-in servers are not production-
ready, we also ran our services on a production-quality WSGI
server called Waitress.

E. GraphQL

Traditionally, developers had two main options to retrieve
data from multiple microservices: (1) make multiple requests
through the Internet to each microservice and join data locally;
or (2) develop specific REST endpoints on a gateway for each
data join required. Both options are not ideal. Making multiple
requests through the Internet introduces additional latency for
each request made, thereby degrading the user experience. An
alternative is to develop specific REST endpoints for each data
join required. However, this tightly couples the development of
the querying application (frontend) to the backend. Changes
to the frontend are blocked by changes to the backend, and
the backend must maintain endpoints for each specific join of
data required on the frontend.

GraphQL solves both issues by allowing a single request to
define the data joins required between data objects from
different microservices. This allows data to be joined within
the fast internal network instead of over the Internet and
served through one request. This also moves the responsibility
of defining the structure and joins of data closer to the
frontend.

F. Saga Engine

The Saga Engine provides a framework-agnostic
implementation of the saga pattern.

Each transaction is treated as a flow of data through
different microservices. To remain framework-agnostic,

transactions are defined in a superset of JSON named Saga
Flow Definition (SFD). SFD allows us to describe how data
from one service is passed to other services. In addition, SFD
also supports conditional dispatching, custom failure
conditions, and custom authentication methods per service.
More details about SFD can be found on the README of the
Saga Engine repository.

The Saga Engine then defines a unique ID for the
transaction and executes the transaction by dispatching
requests to other microservices. This unique ID is logged to
provide better process visibility in the log files. Currently, only
synchronous HTTP dispatches are supported. However, we
plan on supporting AMQP messaging in the future.

The main limitation of the Saga Engine is that it cannot
define custom compensation logic. Microservices being called
by the Saga Engine must provide a pre-defined endpoint to
receive compensation requests. Unfortunately, this couples the
microservice to the Saga Engine. In addition, microservices
must handle concurrency issues such as race conditions and
deadlocks internally. We plan on developing this idea further
to find solutions to these problems.

IX. CRITICAL REFLECTIONS

A. What Went Well

The entire development process was largely smooth as the
team put in regular work throughout the duration of the
project. We had weekly meetings to discuss next steps and
review the work done during the week, enabling clear
communication and a steady rate of progress. The weekly labs
also served as a great starter pack for us to reference when
creating our services and tests (special shoutout to the
provided wait-for-it.sh script). Our team was also very
collaborative in general, with each member readily giving and
receiving help and feedback, thus elevating our combined
productivity as a team.

The team also made good progress with our preliminary
exploration into the Saga Engine. This was made possible by
our team culture of fast and constant feedback. We continually
discovered new limitations with the Saga Engine and quickly
worked to solve them.

The loose coupling between microservices enabled parallel
development of services and granted flexibility to adjust
implementation details without affecting other services. For
example, our notifications service went through three phases:
we initially planned to use Firebase, subsequently considered
using Gmail, and eventually implemented email notifications
via SendGrid. Despite these changes to our notification system,
the development of other services could continue without a
hitch.

B. What We Would Change

a) Standardised Interface: The development of the
auction composite service would have been easier if there was

a standard interface across each atomic service, such as
following a standard template for the “message” field in the
JSON response.
b) Service Discovery: Instead of hardcoding URLs,

we could use service discovery solutions (e.g. Netflix Eureka,
AWS Route 53) to dynamically discover other microservices
on the network.
c) Bidding History on Listing Service: Currently,

we do not persist bidding information of past bidders in our
listing service, only the current highest bidder and the previous
highest bidder. If we had more time, we would have changed
how this worked by introducing another “bidding” table (or
“bidding” service) to store each bid transaction.
d) Staging Area: We could add an intermediary

staging environment in between development and production
– the staging area will allow for manual QA testing in a near-
production environment. To grant more control over
production, staging would have continuous deployment, while
production would have manual deployment.
e) EC2 to Fargate Instances: Our ECS task

definitions and services are currently configured to use EC2
instances, meaning they are all being run on a single ECS
cluster instance. Changing EC2 to Fargate would have allowed
our services to run with their own elastic IP addresses and
would have given us better access to service discovery.

C. What We Could Have Explored

a) Infrastructure as Code (IaC): We would like to
explore IaC tools such as Terraform or CloudFormation to
declaratively define and deploy infrastructure in a consistent
and centralised manner. By automating this process, the
infrastructure supporting Kopi Time can be provisioned much
quicker in a less error-prone manner.
b) End-to-end/UI testing: Given time constraints

and the requirements of our project, we only implemented
integration and component tests on the various services in our
application. However, given more time, we would have liked to
explore additional testing methods such as end-to-end and UI
testing (e.g., Cypress, Selenium) to ensure the complete
correctness and health of our application. Since the application
would be tested thoroughly, the chances of frequent
breakdowns and repetitive testing efforts would be greatly
reduced. Adding these automated tests and increasing our
overall test coverage would also reduce the chances of failure
and thus further increase our confidence in the function and
performance of the application.

