
CS441 G1T2 Project Report

Bryan Lee Min Yuan, Ko Hui Ning, Jolene Loh Kar
Inn, Jen Leng

1. Quality of Code

1.1 Architecture

The system is split into multiple components to
represent the physical, link, network, and app
layers. Threads are used to listen for asynchronous
events such as user input and data reception.

The observable pattern is used to pass data up
from lower layers to higher layers via callback
functions, similar to interrupt-driven socket I/O.

With the exception of the user input handler,
data is always passed between components as raw
bytes to best simulate real networking code. Data
classes represent data objects such as Ethernet
frames and IP packets, with serialization functions
to convert to and from raw bytes.

The demonstration network is configured as:

1.2 Public Routing

A distinction is made between private and public
networks to simulate more complex routing
protocols. The simplest solution matching the
project requirements (1-byte IP addresses with
nodes 0x1a, 0x1b, and 0x2a) is to assign 2 bits to
the public address (a subnet mask of 11000000). IP
addresses in the range 0x00 – 0x3f are private and
routed internally.

This leaves 0x40, 0x80, and 0xc0 in the public
IP address space. This is sufficient to demonstrate
IP traceback. For simplicity, NAT is not
implemented. The fully qualified address is derived
from the bitwise addition of public and private
addresses.

1.2.1 Routing protocol

A simple Bellman-Ford algorithm is used to
populate the routing table. For simplicity, routers
are identified only by their public IP addresses (first
2 bits in the address).

1.2.2 Router network configuration

Routers are connected physically to form
networks. To simulate this behavior, every router
listens for TCP connections on "network interface"
ports – each connection represents a wire on a local
area network (LAN). For simplicity, only tree
networks are supported.

1.2.3 Open category

ARP Spoofing An additional protocol field is
reserved on the 5th byte of the Ethernet frame
header to support ARP payloads.
+-

| src_mac | dst_mac | prtcl | payload.

+-

Each node maintains an ARP cache.
Implementing ARP allows for the simulation of
ARP spoofing.

Running the arp_spoof command on a node
lets the node reply to all ARP requests for the
spoofed IP with its own MAC address, thereby
poisoning the requestor’s ARP cache.

Denial of Service (DOS) An artificial rate limit
is added to the router on each message to simulate
packet processing time. A fixed-size FIFO queue
simulates router buffers. If packets arrive with an
interarrival time faster than processing time, the
buffers will fill and packets will be dropped when
full. This enables DOS attacks on the routers as
resources can be overloaded to drop packets and
reduce availability.

IP Traceback Supporting public routing enables
an implementation of node sampling IP Traceback
because packets can now traverse multiple routers.
A miscellaneous field is reserved on the 5th byte of
the IP packet header to be marked by routers. Given
a packet, a router has a 50% chance of marking the
packet with its public IP address.
+-+

| srcip | dstip | prtcl | size | misc | payload

+-+

A DOS attack can be used to generate the high
volume of packets required for node sampling

before IP Traceback is used to reconstruct the
attacker's route. For example, packet traffic from
Node 3 to Node 5 in the demonstration network will
reconstruct the path 0x40→0x80→0xc0.

2. Learning Points

2.1 Network Infrastructure

Through this project, our team better understood
the encapsulation and decapsulation of packets at
the network and link layers. Implementing the data
structures for message passing helped us realize the
intricacies of designing a packet structure to be both
predictable and flexible.

Implementing the network and link layers
provided a new perspective on the pros and cons of
separating the concerns between the OSI layers e.g.
the link layer has no knowledge of the packet IP
addresses and broadcasts frames based on their
MAC addresses. Conversely, the IP handler has no
knowledge of the frame MAC addresses.

2.2 MAC Address Resolution for Router

In the initial design of the router controller, it
was assumed that the behavior of a router and
network node are distinct enough to warrant
different implementations. Consequently, the router
was implemented with a central message queue for
message passing while the network node was
implemented with observables. The initial imple-
mentation of the Address Resolution Protocol
(ARP) is built on the observable system for network
nodes. However, it was later noted that the router
also needed an implementation of ARP. This simple
fact had slipped our mind and in implementing this
project, we were reminded that routers also require
ARP. To reduce code duplication, the router was
refactored to use observables instead and share its
ARP implementation with network nodes.

2.3 Network Attacks

IP Spoofing Our team was under the impression
that IP spoofing would allow packets to be sent
back to the attacker. Thus in our initial imple-
mentation of IP spoofing, a spoofing node would
reply to a ping request to avoid detection. However,
after further research, we realize that IP spoofing
does not prevent an impersonated victim within a
LAN from receiving the original request due to a
shared medium. Furthermore, the impersonated

network device will receive replies to the spoofed
address in a mechanism known as backscatter. This
can be used to detect large-scale spoofing attacks.

Denial of Service (DOS) In implementing DOS,
we needed to rate-limit each router to magnify the
effects of processing time for packet routing. On the
first simulated DOS attack, the router's queue is
congested with packets as expected and is unable to
process benign packets. However, this behavior was
unpredictable and the result of unsafe threading. To
improve the simulation of our router, we added a
thread-safe FIFO buffer to manage packet
congestion by consistently dropping packets when
the buffer is full. This simulates typical router
behavior when incoming traffic arrives at a greater
rate than outgoing traffic.

IP Traceback The implementation of IP
traceback better allowed us to appreciate how the
probabilistic marking of packets allows for path
reconstruction. With our own implementation, we
are able to experiment with different numbers of
routers and packet quantities to determine how they
affect the accuracy of path reconstruction. We noted
that with more routers, a higher number of packets
would be necessary for accurate path
reconstruction.

Sniffing Attack To implement sniffing attacks,
we first had to figure out how to make a node
promiscuous. Our implementation uses a boolean
value to indicate whether a node is promiscuous or
not. This allows us to easily toggle sniffing on and
off. If a node is promiscuous, it would not drop any
packets, including those not intended for it. By
observing the traffic when sniffing is turned on, we
learned more about the flow of the packets, which
aided us in further debugging.

